facebook围棋人工智能研究进展

红色violin 发表于 2015-11-25 08:27:09 | 只看该作者 [复制链接] 打印 上一主题 下一主题
1 8216
文章来源:弈楓圍棋天地

    脸书(facebook  )围棋人工智能(AI)研究团队近日发表了一篇研究报告,不同于目前多数采取蒙地卡罗树搜寻演算法的电脑围棋软体,脸书围棋 AI 采取基于深度卷积神经网络(Deep Convolutional Neural Network)研究发展的型态比对技术(pattern-matching approach),并以 "Darkforest" 之名在KGS围棋伺服器与其他电脑围棋软体(Go Bot) 、以及真人进行对弈,目前棋力大约1至2段,此外研究团队还提到如果同时结合两项技术,对局表现更佳,不过这与团队先前所宣称的目标尚有一大段距离,脸书谷哥两大网路巨擘相继投入资源研发围棋人工智能,期待有所重大突破。
原文:
Better Computer Go Player with Neural Network and Long-term PredictionYuandong Tian, Yan Zhu
(Submitted on 19 Nov 2015)
Competing with top human players in the ancient game of Go has been a long-term goal of artificial intelligence. Go's high branching factor makes traditional search techniques ineffective, even on leading-edge hardware, and Go's evaluation function could change drastically with one stone change. Recent works [Maddison et al. (2015); Clark & Storkey (2015)] show that search is not strictly necessary for machine Go players. A pure pattern-matching approach, based on a Deep Convolutional Neural Network (DCNN) that predicts the next move, can perform as well as Monte Carlo Tree Search (MCTS)-based open source Go engines such as Pachi [Baudis & Gailly (2012)] if its search budget is limited. We extend this idea in our bot named darkforest, which relies on a DCNN designed for long-term predictions. Darkforest substantially improves the win rate for pattern-matching approaches against MCTS-based approaches, even with looser search budgets. Against human players, darkforest achieves a stable 1d-2d level on KGS Go Server, estimated from free games against human players. This substantially improves the estimated rankings reported in Clark & Storkey (2015), where DCNN-based bots are estimated at 4k-5k level based on performance against other machine players. Adding MCTS to darkforest creates a much stronger player: with only 1000 rollouts, darkforest+MCTS beats pure darkforest 90% of the time; with 5000 rollouts, our best model plus MCTS beats Pachi with 10,000 rollouts 95.5% of the time.
Comments:10 pages, 9 without references. Submission for ICLR 2016
Subjects:Learning (cs.LG); Artificial Intelligence (cs.AI)
Cite as:arXiv:1511.06410 [cs.LG]
(or arXiv:1511.06410v1 [cs.LG] for this version)



本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复

使用道具 举报

沙发
发表于 2015-11-25 08:27:09 | 只看该作者
脸书谷哥两大网路巨擘相继投入资源研发围棋人工智能
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

最新活动

排行榜

新品速递

新人课堂

  • 社区微博
  • 官方微信


关于我们

西宁维度信息技术有限公司成立于2011年,公司以软件开发为主业。烂柯围棋是公司自研产品,以后将逐步完善,使烂柯围棋成为新兴围棋品牌。

联系我们

  • 地址: 青海生物科技产业园经四路生科创业园4楼401
  • 电话: +86 (0) 0971-8127394
  • Email: 879500316@qq.com

分享到

团队成员

© 2011-2015 西宁维度信息技术有限公司,青ICP备13000468号-1
快速回复 返回顶部 返回列表